Statistics Done Wrong

The woefully complete guide

by Alex Reinhart

If you’re a practicing scientist, you probably use statistics to analyze your data. From basic t tests and standard error calculations to Cox proportional hazards models and propensity score matching, we rely on statistics to give answers to scientific problems.

This is unfortunate, because statistical errors are rife.

Statistics Done Wrong is a guide to the most popular statistical errors and slip-ups committed by scientists every day, in the lab and in peer-reviewed journals. Many of the errors are prevalent in vast swaths of the published literature, casting doubt on the findings of thousands of papers. Statistics Done Wrong assumes no prior knowledge of statistics, so you can read it before your first statistics course or after thirty years of scientific practice.

If you find any errors or typos, or want to suggest other popular misconceptions, contact me. If you find this website useful, consider buying the book! Or find it in Deutsch, 한국어, Italiano, 中文 (简体 and 繁體), or 日本語.

“Of all the books that tackle these issues, Reinhart’s is the most succinct, accessible and accurate assessment of the statistical flaws that render many scientific studies suspect… It should be required reading for all scientists”

Science News

“If you analyze data with any regularity but aren’t sure if you’re doing it correctly, get this book.”

FlowingData